
Download free eBooks at bookboon.com

Digital Systems Design

47

Karnaugh Maps

4	 Karnaugh Maps
In the previous chapter, simplification of expressions for combinatorial logic circuits was studied using Boolean algebra
and DeMorgan’s theorem. In this chapter, a different graphical based method called Karnaugh maps (or K-maps in short)
will be studied to simplify the expressions. But before K-maps can be discussed, the two types of methods for writing
logic circuit expressions will be discussed.

4.1	 Sum of products

Sum of products (SOP) is a method to express the terms in a logic expression as a sum of products. For example:

The logic circuit diagrams for these expressions are shown in Figure 4.1. It can be seen that each product term is connected
using an OR gate.

CBAABCF +=

A

B

C

BABAABF ++=

A
B

Figure 4.1: SOP logic circuit examples.

http://bookboon.com/

Download free eBooks at bookboon.com

Digital Systems Design

48

Karnaugh Maps

Tables 4.1 and 4.2 give the truth tables for these expressions. Each product term results in the output F = 1. For example,
the expression CBAABCF += gives output of 1 when A=1, B=1 and C=1 for ABCF = and similarly for CBAF =
, the output is 1 when A=1, 1=B (i.e. 0=B) and C=1.

Table 4.1: Truth table for CBAABCF +=

Table 4.2: Truth table for

4.2	 Product of sums

Products of sums (POS) is another method to express the terms in a logic circuit expression as a product of sums. For
example:

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Digital Systems Design

49

Karnaugh Maps

The logic circuit diagrams for these expressions are shown in Figure 4.2. An AND gate connects each of the sum terms.

A

B

))((BABAF ++=

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Digital Systems Design

50

Karnaugh Maps

A

B

C

))()((CBCACBAF ++++=

Figure 4.2: POS logic circuit examples.

The truth table for the first POS example, is given in Table 4.3. To understand the table, consider
 and using DeMorgan’s theorem, we can obtain

So, the truth table for POS terms can be easily completed for each term by giving output F=0 with the variables A and B
following negative logic (i.e. complemented variable is logic 1 and uncomplemented variable is logic 0).

Table 4.3: Truth table for

http://bookboon.com/

Download free eBooks at bookboon.com

Digital Systems Design

51

Karnaugh Maps

Table 4.4 gives the truth table for the second POS example, . Following the similar
procedure, consider

)()()(CBCACBAF ++++++=

CBCACBAF ++=

)()(AACBBBCACBAF ++++= 	 since 1=+ XX

CBACBACBACBACBAF ++++= 	

CBACBACBAF ++= 			 as CBACBACBACBA =++

Table 4.4: Truth table for

POS expressions are not frequently employed in digital systems but discussed here for the sake of completeness.

4.3	 K-maps

As mentioned earlier, K-map is a graphical method that is useful to simplify logic expressions. While the algebraic methods
discussed in Chapter 3 can equally be used to simplify the expression, it is often easier to simplify an expression using
K-maps when the number of variables is higher.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Digital Systems Design

52

Karnaugh Maps

4.3.1	 Two variable K-map

Consider a truth table as in Table 4.5 with two variables A and B. Its corresponding K-map is drawn in Figure 4.3. The
K-map can be completed for variable combinations that give F=1 and F=0 as in the figure but it is common practice not
to include F=0 in K-maps, so we shall only include combinations that give F=1 after this example.

Table 4.5: Truth table for two variable K-map example

A B F

0 0 0

0 1 1

1 0 1

1 1 1

A=0 A=1

A A

B=0 B F=0 F=1

B=1 B F=1 F=1

Figure 4.3: K-map example from truth table in Table 4.5.

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Digital Systems Design

53

Karnaugh Maps

To simplify the expression, start by creating a loop for (i.e. for adjacent cells) as shown in Figure 4.4(a).
This loop is known as pair loop as it involves looping two 1s. Since the looping
will result in AF = , i.e. the variable in complement and uncomplemented form disappears. The process is repeated
until all 1s have been looped (note that loops can overlap). Hence, repeat the looping as shown in Figure 4.4(b) where

. Since all 1s in the K-map have been looped, further simplification is not possible and the
simplified expression is a combination of the two looped terms (each loop gives one term): BAF += .

Figure 4.4: Two variable K-map looping: (a) AF = , (b) BF = . Simplified expression from both loops is BAF += .

Consider solving the example algebraically from the truth table with K-map (each term is a variable combination that
gives F=1):

The answer is obviously the same.

4.3.2	 Three variable K-map

In addition to pair loops, we can have quad loops (involving four 1s). Consider a three variable logic expression:
 . A truth table can be completed with each term ABC , CBA , CBA ,

CBA giving output F=1 as shown in Table 4.6.

http://bookboon.com/

Download free eBooks at bookboon.com

Digital Systems Design

54

Karnaugh Maps

Table 4.6: Truth table for

Figure 4.5 gives the completed three variable K-map. Note in particular on the sequence of variables A and B in the K-map.
The sequence (order) follows gray code (00011110 with BA  BA   BA) where only one bit changes
in adjacent cells. Figure 4.6(a) shows the quad loop applied for four adjacent 1s. Variables B and C are in complemented
and uncomplemented forms in the quad loop, so these variables will disappear leaving only variable A. For this loop,
algebraically,

However, it is not the end of the simplification as there is one more 1 that is not paired (for CBAF =). Loops in K-maps
can wrap around, so create a pair loop as shown in Figure 4.6(b). Variable A is in complemented and uncomplemented
forms in the pair loop, so it will disappear leaving only CB . So the resulting simplified expression will be CBAF += .

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Digital Systems Design

55

Karnaugh Maps

Figure 4.5: Three variable K-map for .

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://bookboon.com/
http://bookboon.com/count/advert/bb104666-5119-403f-91c4-a3e7010cbfdf

Download free eBooks at bookboon.com

Digital Systems Design

56

Karnaugh Maps

Figure 4.6: Three variable K-map shown in Figure 4.5: (a) quad loop (b) quad with pair loop.

As another example, consider CBACBABAF ++= . Since one of the terms, BA has only two variables, it should
be expanded to give BA =)(CCBA + = CBACBA + . So CBACBACBACBAF +++= . Now the
K-map can be constructed as shown in Figure 4.7 and quad loop applied to give BF = .

Figure 4.7: Three variable K-map for CBACBACBACBAF +++= .

It can be verified that algebraic simplification also gives the same result:

CBACBABAF ++=

)(CCBABAF ++=

BABAF +=

)(AABF +=

BF =

http://bookboon.com/

Download free eBooks at bookboon.com

Digital Systems Design

57

Karnaugh Maps

4.3.3	 Four variable K-map

Consider a logic expression with four variables:

Figure 4.8 shows the K-map for this expression. With four variables, octet looping (with eight 1s) is possible. Note that
loops should be as big as possible, so if there is a choice of two quad loops and one octet loop, then the octet loop should
be created.

Only variable C remains from the octet loop as the other variables are in both complement and uncomplemented forms
and hence disappear. There are two quad loops that give and DA (wrapped around loop). The final expression is

.

It should be obvious now that a pair loop removes one variable, a quad loop removes two variables while an octet loop
removes three variables. In the example above, octet loop removed variables A , B and D .

Figure 4.8: Four variable K-map.

4.3.4	 Additional examples

Consider the truth table as in Table 4.7. For this example, let us obtain the simplified logic circuit diagram.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Digital Systems Design

58

Karnaugh Maps

Table 4.7: Truth table for additional example 1

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

Digital Systems Design

59

Karnaugh Maps

First, the logic expression should be obtained from the truth table and using it, K-map drawn (as shown in Figure 4.9).
Next, we can obtain the simplified expression and with it draw the simplified logic circuit diagram as shown in Figure 4.10.

Logic expression:

K-map:

Figure 4.9: K-map for additional example 1.

Simplified expression: .

Simplified logic circuit diagram:

A

B

C

CDBDAF ++=

D

Figure 4.10: Simplified logic circuit diagram additional example 1.

http://bookboon.com/

Download free eBooks at bookboon.com

Digital Systems Design

60

Karnaugh Maps

As another example, consider a logic expression, and
its corresponding K-map as shown Figure 4.11.

Figure 4.11: K-map for the additional example 2.

The wrapped around quad loop gives DB while the pair loop gives CBA . There is a single 1 that can’t be looped, so
it remains as it is: . So, the simplified expression is .

4.3.5	 Don’t care conditions

In digital logic design, we often encounter don’t care conditions. These conditions are cases that won’t occur in our design
and hence the output can be set to any value (either 0 or 1). Don’t care conditions are denoted using X in the truth tables
and K-maps. For example, consider a seven segment display device as shown in Figure 4.12 that is commonly used to
display hexadecimal characters.

a

b

c

d

e

f

g

Figure 4.12: Seven segment display.

The device consists of light emitting diodes (LEDs)7 that light up with different patterns to give the hexadecimal output
as shown in Figure 4.13. Note that the hex characters A to F are normally displayed in a mixture of upper and lowercase
to avoid ambiguity (for example differentiating D with 0, B with 8 etc).

7	 Newer devices operate using liquid crystal technology.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Digital Systems Design

61

Karnaugh Maps

Figure 4.13: Hex characters displayed by the seven segment display.

Table 4.8 gives the character encodings for the seven LEDs (a, b, ,g), where a 1 denotes that the LED will be ON and
a 0 denotes that the LED will be OFF. So to display numeral 0, LEDs a, b, c, d, e, and f will be turned on and LED g will
be off. Similarly, to display character F, LEDs a, e, f, and g will be on while LEDs b, c, and d will be off.

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Digital Systems Design

62

Karnaugh Maps

Table 4.7: Character encodings for seven segment display LEDs

LED
Digit a b c d e f g

0 1 1 1 1 1 1 0
1 0 1 1 0 0 0 0
2 1 1 0 1 1 0 1
3 1 1 1 1 0 0 1
4 0 1 1 0 0 1 1
5 1 0 1 1 0 1 1
6 1 0 1 1 1 1 1
7 1 1 1 0 0 0 0
8 1 1 1 1 1 1 1
9 1 1 1 1 0 1 1
A 1 1 1 0 1 1 1
b 0 0 1 1 1 1 1
C 1 0 0 1 1 1 0
d 0 1 1 1 1 0 1
E 1 0 0 1 1 1 1
F 1 0 0 0 1 1 1

Now, for the sake of discussing the don’t care conditions, consider that we are going to use the seven segment display only
to display the decimal numerals (i.e. 0 to 9). So, while designing the necessary wiring for the device, we can now ignore
displays for the rest of the characters A to F. This situation will be denoted with X as in Table 4.8. Let us obtain the logic
expression for LED a. To avoid confusion with the hex characters, we’ll denote the variables as P, Q, R, and S instead
of A, B, C and D as used earlier. Four variables (i.e. four inputs) are required since we have ten possible combinations.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Digital Systems Design

63

Karnaugh Maps

Table 4.8: Seven segment display LED encoding for decimals (showing don’t care conditions)

LED
Digit a b c d e f g

0 1 1 1 1 1 1 0
1 0 1 1 0 0 0 0
2 1 1 0 1 1 0 1
3 1 1 1 1 0 0 1
4 0 1 1 0 0 1 1
5 1 0 1 1 0 1 1
6 1 0 1 1 1 1 1
7 1 1 1 0 0 0 0
8 1 1 1 1 1 1 1
9 1 1 1 1 0 1 1
A X X X X X X X
b X X X X X X X
C X X X X X X X
d X X X X X X X
E X X X X X X X
F X X X X X X X

Using the truth table, we can now construct the K-map as shown in Figure 4.14 (without considering don’t care conditions)
and Figure 4.15 (with don’t care conditions).

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

Digital Systems Design

64

Karnaugh Maps

Table 4.9: Truth table for LED a

Digit P Q R S LED a
0 0 0 0 0 1
1 0 0 0 1 0
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 0 0 0
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 1
A 1 0 1 0 X
b 1 0 1 1 X
C 1 1 0 0 X
d 1 1 0 1 X
E 1 1 1 0 X
F 1 1 1 1 X

Figure 4.14: K-map for LED a without considering don’t care conditions.

The simplified expression without considering don’t care conditions is .
Note that the solution is not unique as the wrapped around pair loop could also be formed for SRQP and SRQP
giving SQP instead of SRQ as shown for SRQP and SRQP . With this, the simplified expression will be

.

http://bookboon.com/

Download free eBooks at bookboon.com

Digital Systems Design

65

Karnaugh Maps

Now consider Figure 4.15 where the don’t care conditions are accounted. Since X is either 0 or 1, we can assume it to be
1 and use in the looping procedures.

Figure 4.15: K-map for LED a (considering don’t care conditions).

The simplified expression is now and it can be seen that the expression is made simpler
by considering the don’t care conditions.

As a final example for the chapter, let us obtain the logic expression for LED b. Table 4.10 gives the truth table and Figure 4.16
shows the K-map with don’t care conditions. The simplified logic expression is
. It should not be forgotten that the loops should be as big as possible.

http://bookboon.com/

Download free eBooks at bookboon.com

Digital Systems Design

66

Karnaugh Maps

Table 4.10: Truth table for LED b

Digit P Q R S LED b
0 0 0 0 0 1
1 0 0 0 1 1
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 0
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 1
A 1 0 1 0 X
b 1 0 1 1 X
C 1 1 0 0 X
d 1 1 0 1 X
E 1 1 1 0 X
F 1 1 1 1 X

Figure 4.16: K-map for LED b with don’t care conditions.

http://bookboon.com/

